## Codeforces Round Hello 2018 (4/8)

maksyuki 发表于 比赛 分类，标签:

A Modular Exponentiation
The following problem is well-known: given integers n and m, calculate,
where 2n = 2·2·...·2 (n factors), and denotes the remainder of division of x by y.
You are asked to solve the "reverse" problem. Given integers n and m, calculate.

Input
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output
Output a single integer — the value of.
Examples
input
4
42
output
10
input
1
58
output
0
input
98765432
23456789
output
23456789
Note
In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.
In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.

B Christmas Spruce
Consider a rooted tree. A rooted tree has one special vertex called the root. All edges are directed from the root. Vertex u is called a child of vertex v and vertex v is called a parent of vertex u if there exists a directed edge from v to u. A vertex is called a leaf if it doesn't have children and has a parent.

Let's call a rooted tree a spruce if its every non-leaf vertex has at least 3 leaf children. You are given a rooted tree, check whether it's a spruce.

The definition of a rooted tree can be found here.

Input
The first line contains one integer n — the number of vertices in the tree (3 ≤ n ≤ 1 000). Each of the next n - 1 lines contains one integer pi (1 ≤ i ≤ n - 1) — the index of the parent of the i + 1-th vertex (1 ≤ pi ≤ i).

Vertex 1 is the root. It's guaranteed that the root has at least 2 children.

Output
Print "Yes" if the tree is a spruce and "No" otherwise.

Examples
input
4
1
1
1
output
Yes
input
7
1
1
1
2
2
2
output
No
input
8
1
1
1
1
3
3
3
output
Yes

C Party Lemonade
A New Year party is not a New Year party without lemonade! As usual, you are expecting a lot of guests, and buying lemonade has already become a pleasant necessity.

Your favorite store sells lemonade in bottles of n different volumes at different costs. A single bottle of type i has volume 2i - 1 liters and costs ci roubles. The number of bottles of each type in the store can be considered infinite.

You want to buy at least L liters of lemonade. How many roubles do you have to spend?

Input
The first line contains two integers n and L (1 ≤ n ≤ 30; 1 ≤ L ≤ 109) — the number of types of bottles in the store and the required amount of lemonade in liters, respectively.

The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 109) — the costs of bottles of different types.

Output
Output a single integer — the smallest number of roubles you have to pay in order to buy at least L liters of lemonade.

Examples
input
4 12
20 30 70 90
output
150
input
4 3
10000 1000 100 10
output
10
input
4 3
10 100 1000 10000
output
30
input
5 787787787
123456789 234567890 345678901 456789012 987654321
output
44981600785557577

Note
In the first example you should buy one 8-liter bottle for 90 roubles and two 2-liter bottles for 30 roubles each. In total you'll get 12 liters of lemonade for just 150 roubles.

In the second example, even though you need only 3 liters, it's cheaper to buy a single 8-liter bottle for 10 roubles.

In the third example it's best to buy three 1-liter bottles for 10 roubles each, getting three liters for 30 roubles.

D Too Easy Problems
You are preparing for an exam on scheduling theory. The exam will last for exactly T milliseconds and will consist of n problems. You can either solve problem i in exactly ti milliseconds or ignore it and spend no time. You don't need time to rest after solving a problem, either.

Unfortunately, your teacher considers some of the problems too easy for you. Thus, he assigned an integer ai to every problem i meaning that the problem i can bring you a point to the final score only in case you have solved no more than ai problems overall (including problem i).

Formally, suppose you solve problems p1, p2, ..., pk during the exam. Then, your final score s will be equal to the number of values of j between 1 and k such that k ≤ apj.

You have guessed that the real first problem of the exam is already in front of you. Therefore, you want to choose a set of problems to solve during the exam maximizing your final score in advance. Don't forget that the exam is limited in time, and you must have enough time to solve all chosen problems. If there exist different sets of problems leading to the maximum final score, any of them will do.

Input
The first line contains two integers n and T (1 ≤ n ≤ 2·105; 1 ≤ T ≤ 109) — the number of problems in the exam and the length of the exam in milliseconds, respectively.

Each of the next n lines contains two integers ai and ti (1 ≤ ai ≤ n; 1 ≤ ti ≤ 104). The problems are numbered from 1 to n.

Output
In the first line, output a single integer s — your maximum possible final score.

In the second line, output a single integer k (0 ≤ k ≤ n) — the number of problems you should solve.

In the third line, output k distinct integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the indexes of problems you should solve, in any order.

If there are several optimal sets of problems, you may output any of them.

Examples
input
5 300
3 100
4 150
4 80
2 90
2 300
output
2
3
3 1 4
input
2 100
1 787
2 788
output
0
0

input
2 100
2 42
2 58
output
2
2
1 2
Note
In the first example, you should solve problems 3, 1, and 4. In this case you'll spend 80 + 100 + 90 = 270 milliseconds, falling within the length of the exam, 300 milliseconds (and even leaving yourself 30 milliseconds to have a rest). Problems 3 and 1 will bring you a point each, while problem 4 won't. You'll score two points.

In the second example, the length of the exam is catastrophically not enough to solve even a single problem.

In the third example, you have just enough time to solve both problems in 42 + 58 = 100 milliseconds and hand your solutions to the teacher with a smile.